Great Cow BASIC Command Reference

and General Information
Last updated: 14/1/2007

Leiend to hiihliihting:

Not tested
Not implemented

Supported chips:

In theory, all 10/12/14/16/18 series PIC chips. See chipdata.csv for a complete list.
Some features may not work on all chips — if you find that this is the case, please do
not hesitate to email hconsidine@bigpond.com with the name of the chip and the
feature that is causing difficulty.

Commands:

Note: All standard PIC assembly mnemonics can be inserted directly in to the
GCBASIC program — anything not recognized by the compiler will be passed straight
through to the assembly.

Command | Explanation

Flow Control

—

mailto:hconsidine@bigpond.com

CALL sub EVERY ticks

Call up sub every ticks of the interrupt. Set ticks to 0 to
stop call for a particular sub. (Interrupt must be defined)

Variable

([LET]varl=var2 |

Compiler (Commands in main file will override those in includes, and commands in
includes will override those in nested includes)

#int frequency

—

Set up an interrupt of the given frequency. Used in
conjunction with the CALL EVERY command. Frequency
1s Hz (app. Range on 20 MHz: 76-19,000).

RS 232 Commands (lowlevel\rs232.h

A/D Commands (lowleve

l\a-d.h

ADFormat (Format_Left

Left ignores highest bits in ADRESH. Right ignores
lowest in ADRESL.

Format Right)

| SPI/I2C Commands (lowlevel\ssp.h)

EEPROM Commands (lowlevel\eeprom.h

1IE

Hardware PWM Commands (lowlevel\

SRF04 Distance Sensor Commands (s#f04.h

Sound Commands lowlevel\sound.hi

| LCD Display Commands (lowlevel\lcd.h)

PUT (location, ASCII
char)

Write the specified ASCII character to the given location

x = GET (location)

Return the ASCII character at the given position

:

7-Segment Dis

lay Commands (lowlevel\7segment.h

Keypad Commands (lowlevel\keypad.h)

Var = KeypadRaw

Returns a 16-bit value, in which each bit corresponds to a
key (1 = pressed, 0 = released).

Var = KeypadData

Returns 0-9, KEY A, KEY B,KEY C,KEY D,
KEY HASH or KEY STAR, depending on which key is
pressed. If no key is pressed, it returns 255.

String handling Functions

Var = LEN(String$)

Returns the length of the specified string.

OutString$ = MID$
(InString$, position,
length)

Returns the given portion of InString

Timer Functions (lowlevel\timer.h

InitTimer2 iPrescaleri

Misc. Commands/Functions

L,

Compiler script commands:

Command Explanation

il

Note: These commands are executed by GCBASIC, and are useful for setting
constants to a particular value inside include files. They are not downloaded to the
PIC.

Constants are treated as variables are normally treated —they can be set.
Constants must have been defined before they are used in an IF, either by setting
them, or using #define.

Functions:

Function Explanation

L

Short Forms:
X +=yis equivalenttox =x +y
X -=yisequivalenttox =x -y

Functions must have “var =" before them (minus quotes), where var is the name of
the variable that is to be set.
Order of operations:

* 0

. —|—’ -

* AND, OR, XOR, NOT

Conditions

Built-in #defines (used for #IFDEF)

Var(), NoVar(), Bit() and NoBit() are functions that are built in to #IFDEF. They will
return true if a variable or bit is declared/not declared in the currently selected PIC
chip.

AllOf and OneOf will return true if all of or one of the listed defines is declared.

Built-in #defines (used for IFs, WAITS, etc.)

Name Value

ON 1

OFF 0

TRUE 255 (or 1 for bit variables)
FALSE 0

NB. Other #defines are set by the built-in include files.

Time Units

Units GCBASIC units

Microseconds us

Microseconds * 10 10us

Milliseconds ms

Milliseconds * 10 10ms

Seconds S

Minutes m

Hours h

Data Types:

Type Size Range
Bit 1 bit Otol
Byte 8 bits 0to 255
Word 16 bits 0 to 65535
Float 24 bits ?

Assembler/Programmer parameters:
These options can be used after the /A: and /P: switches to control the assembler and
programming software:

Symbol Replaced with

%Filename% The original filename of the BASIC
program

%Chipname% The chip model

Data Tables:

Data tables can be used to store a list of up to 255 numbers in the program memory of
the chip, in a way that allows them to be recalled. The format is as follows:

Table [Name of Table]
[Value 1]
[Value 2]

[Value 3]
End Table

Binary, hexadecimal and decimal numbers can be used in the table.
Chip Configuration:

The following are the default settings used by GCBASIC for chip configuration:

* Oscillator = HS, XT or INTOSC (see help for more detail)
* MCLR = Off

« WDT =Off

e LVP=0ff

For 18x chips, type in the config exactly as you would type it in to MPASM. For
example:

#config OSC=HS PLL, WDT = ON

For 10x/12x/16x chips, you may use either the 18x format as shown above, or the
default 10x/12x/16x format as used by MPASM:

#config LP. OSC, MCLRE ON

Random Notes:

* When dealing with system registers, the variable name may be omitted and
only the bit specified. For example, SET ADCONO.ADON ON is identical to
SET ADON ON.

* GCBASIC is not case sensitive — for example, Wait, WAIT, wait and Walt
would all be treated identically.

Known Limitations:
e Chip Speed: 0.1-60 Mhz
* Lines of GCBASIC code (including subs): 20000
* Assembly Program: 20000 lines
* Include files: 25 (includes built-in include files)
e Constants: 400
* Variables: approx. 3800 or available RAM on PIC (whichever is less)
* Subs (including in include files): 500
* Array size: 80 bytes on 10/12/16, 255 bytes on 18 (Avoid large arrays
wherever possible)
* String length: 20 characters default, 80 if declared using DIM
e Strings: 500

Things which MUST be defined in EVERY program:
#chip model, MHz

(These can be defined in an include file instead. If something is defined in an include
file and the main program, the definition in the main program will be used.)

	Great Cow BASIC Command Reference and General Information
	Flow Control
	Variable
	#include “file.h”
	#define CONST value
	#chip MODEL, MHz
	#osc Type
	#config settinglist
	#IFDEF constant value[,value2,etc.]
	#SCRIPT
	#int frequency
	#startup subname
	#RAM ramsize
	RS 232 Commands (lowlevel\rs232.h)
	InitSer (channel, rate, start, data, stop, parity, invert)
	SerSend (channel, data)
	SerReceive (channel, variable)
	SerPrint (channel, String$)
	ReadAD (port)
	ADFormat (Format_Left | Format_Right)
	ADOff
	SPIMode (Mode)
	SPITransfer (send, receive)
	EPRead (address, var)
	EPWrite (address, data)
	ProgramWrite (Address, Data)
	ProgramRead (Address H, Data)
	ProgramErase (Address)
	PWMOn
	PWMOff
	HPWM Channel, frequency, duty cycle
	USDistance (port no.)
	Tone (Frequency, Duration)
	PRINT String$
	LOCATE column, line
	PUT (location, ASCII char)
	x = GET (location)
	CLS
	LCDInt (Value)
	LCDHex (Value)
	LCDWord (Value)
	DisplayValue (Display Select, Value)
	DisplayChar (Display Select, ASCII Code)
	String handling Functions
	Var = LEN(String$)
	OutString$ = MID$(InString$, position, length)
	InitTimer0 (Source, Prescaler)
	InitTimer1 (Source, Prescaler)
	InitTimer2 (Prescaler)
	ClearTimer (TimerNo)
	StartTimer (TimerNo)
	StopTimer (TimerNo)
	Misc. Commands/Functions
	WAIT length units
	WAIT WHILE|UNTIL condition
	SLEEP time
	DIR PORTBIT IN|OUT
	DIR PORT DirByte
	PULSEOUT pin, time units
	POT pin, output var
	PWMOut channel, duty, cycles.
	‘ ; REM
	Var = PEEK (location)
	POKE (location, value)
	Var = Random
	Swap (Var1, Var2)
	Swap4(Var)
	ReadTable TableName, TableIndex, OutputVar
	Compiler script commands:
	Functions:
	Function	
	Explanation
	Conditions
	Built-in #defines (used for #IFDEF)
	ChipMHz
	Assembler/Programmer parameters:
	Symbol
	Replaced with

