
Great Cow BASIC Command Reference
and General Information
Last updated: 14/1/2007

Legend to highlighting:
Tested and working
Tested and not working
Not tested
Not implemented

Supported chips:
In theory, all 10/12/14/16/18 series PIC chips. See chipdata.csv for a complete list.
Some features may not work on all chips – if you find that this is the case, please do
not hesitate to email hconsidine@bigpond.com with the name of the chip and the
feature that is causing difficulty.

Commands:

Note: All standard PIC assembly mnemonics can be inserted directly in to the
GCBASIC program – anything not recognized by the compiler will be passed straight
through to the assembly.

Command Explanation
Flow Control
IF condition THEN
…
END IF

Execute commands between IF and END IF, if condition
is true.

IF condition THEN
command

Short form of IF. Does not require END IF. Command
must be on same line as IF.

GOTO label Jump to label
label: Defines a label
GOSUB label Call label as a subroutine
RETURN Return from a GOSUB
SubName [(vars)][#NR] Call up sub SubName, and pass vars to it. If vars are

specified, then brackets must be included. #NR stands for
No Return, and will stop the sub from returning values of
variables.

SUB Subname [(vars)] Used to mark the start of a subroutine
EXIT SUB Exit from a subroutine (Only found in subs)

(interchangeable with EXIT FUNCTION)
END SUB Marks the end of a subroutine

(interchangeable with END FUNCTION)
EXIT FUNCTION Exit from a function (Only found in functions)

(interchangeable with EXIT SUB)
FUNCTION
functionname [(vars)]
…
END FUNCTION

Same as for sub, except a value can be returned
automatically ie:
Var = FunctionName (var2)
(Note: When defining a function, be sure to return a value.
To do this, set FunctionName to some value/var.)

mailto:hconsidine@bigpond.com

FOR var = min TO max
STEP step
….
NEXT

Loop (max-min) times. Var will start at min and be
incremented every loop until it is equal to max. During this
time, all code up to NEXT will run. Step is number to add
to var each loop. Step can be a negative.

DO WHILE|UNTIL
condition
…
LOOP

Repeat code while/until condition is true

REPEAT count
…
END REPEAT

Repeat code count times

SELECT CASE var
CASE value1
…
CASE value2
…
CASE ELSE
…
END SELECT

Run a different section of code, based on the value of var.
The CASE ELSE section runs if none of the others do. Not
that CASE ELSE is optional.

CALL sub EVERY ticks Call up sub every ticks of the interrupt. Set ticks to 0 to
stop call for a particular sub. (Interrupt must be defined)

Variable
[LET] var1=var2 Set var1 to var2. var2 can be given as a function. LET is

optional, and exists solely for people familiar with other
BASIC dialects. Appending [WORD] to the line will force
the PIC to use 16-bit mode when performing the
calculation.

ROTATE var {LEFT|
RIGHT} [SIMPLE]

Rotate var 1 bit left/right

SET var.bit, 0|1 Set bit of var to 0 or 1 (OFF or ON accepted)
DIM ArrayName(size) Initialize an array.
DIM VarName AS type Declare a non-byte variable. Only “word” is a valid type at

present.

Compiler (Commands in main file will override those in includes, and commands in
includes will override those in nested includes)

#include “file.h” Include the subs in file.h into the program
Note: using “” will read the file from the same directory
as the program. If <> are used, the file will be read from
the default include folder.

#define CONST value
#define CONST =sum

Create a constant called CONST, and set it to value, or
result of sum.

#chip MODEL, MHz Specifies model and speed of PIC
#osc Type Type is HS/LP/etc.
#config settinglist Settinglist is list of config values in .inc file (WDT_OFF,

etc.)
#IFDEF constant
value[,value2,etc.]
…
#ENDIF

If constant != value/value2/etc, then the code between
value can also be another constant #IFDEF and #ENDIF
will be removed from the compiled code.

#SCRIPT
…
#ENDSCRIPT

Used to make a script which GCBASIC runs. Use for
creating code that can be run on different PIC chips. See
the script commands section for more info

#int frequency Set up an interrupt of the given frequency. Used in
conjunction with the CALL EVERY command. Frequency
is Hz (app. Range on 20 MHz: 76-19,000).

#startup subname Used in include files to define a subroutine that must be
called if anything from that file is used.

#RAM ramsize
#mem ramsize

Specifies the amount of RAM present on the PIC chip. Not
compulsory, but should be used if arrays are in use.

RS 232 Commands (lowlevel\rs232.h)
InitSer (channel, rate,
start, data, stop, parity,
invert)

Channel = 1,2,3
Rate = r300, r600, r1200, r2400, r4800, r9600, r19200
Start = start bits (usually 1), add +WaitForStart to make
the program wait for the start bit when receiving.
Data = data bits (usually 8)
Stop = stop bits (usually 1)
Parity = none, odd, even
Invert = normal, invert

SerSend (channel, data) Data is byte to send using channel
SerReceive (channel,
variable)

Received byte from channel will be written to variable

SerPrint (channel, String
$)

Send String$ over given channel

A/D Commands (lowlevel\a-d.h)
ReadAD (port) Initializes, reads the analog value of port, and restores

ports to digital. Port is AN0-Anx, depending on what the
selected PIC will allow.

ADFormat (Format_Left
| Format_Right)

Left ignores highest bits in ADRESH. Right ignores
lowest in ADRESL.

ADOff Disables A/D, and sets all ports to digital

SPI/I2C Commands (lowlevel\ssp.h)

SPIMode (Mode) Sets the mode of the SPI module. Mode can be
MasterFast, Master, MasterSlow, SlaveSS or Slave.

SPITransfer (send,
receive)

Sends and receives the given data. If the SPI module is in
slave mode, this command will pause the program until
data is requested by the master.

EEPROM Commands (lowlevel\eeprom.h)
EPRead (address, var) Read value from EEPROM. Address is location, var is var

to place data in.
EPWrite (address, data) Write value to EEPROM. Address gives location, data is

byte to write.
ProgramWrite (Address,
Data)

Write the 14-bit value given by Data to the program
memory location given by Address. (Only supported by
some chips)

ProgramRead (Address
H, Data)

Read the 14-bit value given by Data from the program
memory location given by Address. (Only supported by
some chips)

ProgramErase (Address) Erase the 32 bytes of program memory starting at the
given address. This must be done before writing to a
location. For more details, please see the relevant manual
for your PIC chip.

Hardware PWM Commands (lowlevel\pwm.h)
PWMOn Enables PWM by switching the CCP module to PWM

mode
PWMOff Disables PWM by switching the CCP module off.
HPWM Channel,
frequency, duty cycle

Turns on hardware PWM. Channel is 1 for CCP1 and 2 for
CCP2 (on chips so equipped). Frequency is measured in
KHz, and duty cycle is 0 – 255.

SRF04 Distance Sensor Commands (srf04.h)
USDistance (port no.) Function to read a distance from an SRF-04 distance

sensor. The sensor must have been defined correctly – see
the include file for more information.

Sound Commands (lowlevel\sound.h)
Tone (Frequency,
Duration)

Frequency is Hz; Duration is in 10 ms units.

LCD Display Commands (lowlevel\lcd.h)

PRINT String$ Write the string to the LCD, starting at the current cursor
location.

LOCATE column, line Set the cursor to the given position
PUT (location, ASCII
char)

Write the specified ASCII character to the given location

x = GET (location) Return the ASCII character at the given position
CLS Clear the LCD
LCDInt (Value) Write the given value to the LCD, at the current cursor

location.
LCDHex (Value) Write the given value to the LCD, at the current cursor

location. The value will be shown in hexadecimal format.
LCDWord (Value) Write a 16-bit value to the LCD at the current cursor

position. Similar to LCDInt, but can display up to 65535
rather than 255.

7-Segment Display Commands (lowlevel\7segment.h)
DisplayValue (Display
Select, Value)

Display Select is 1, 2, 3 or 4, corresponding to the display
that is to be output to. Value is the value between 0 and 9
to be shown on the screen.

DisplayChar (Display
Select, ASCII Code)

Display Select is 1, 2, 3 or 4, corresponding to the display
that is to be output to. ASCII Code is the character code to
be shown. Note: This can be given as a single character,
enclosed in quotes)

Keypad Commands (lowlevel\keypad.h)
Var = KeypadRaw Returns a 16-bit value, in which each bit corresponds to a

key (1 = pressed, 0 = released).
Var = KeypadData Returns 0-9, KEY_A, KEY_B, KEY_C, KEY_D,

KEY_HASH or KEY_STAR, depending on which key is
pressed. If no key is pressed, it returns 255.

String handling Functions
Var = LEN(String$) Returns the length of the specified string.
OutString$ = MID$
(InString$, position,
length)

Returns the given portion of InString

Timer Functions (lowlevel\timer.h)
InitTimer0 (Source,
Prescaler)

Initializes Timer0. Source is Osc or Ext, Prescaler is
PS0_1/2, PS0_1/4, PS0_1/8, … , PS0_1/256

InitTimer1 (Source,
Prescaler)

Initializes Timer1. Source is Osc, Ext or ExtOsc, Prescaler
is PS1_1/1, PS1_1/2, PS1_1/4 or PS1_1/8.

InitTimer2 (Prescaler)
ClearTimer (TimerNo) Clears selected timer. TimerNo is the number of the timer

to clear.
StartTimer (TimerNo) Starts selected timer. TimerNo is the timer to start. (Note:

Timer0 cannot be stopped or started)
StopTimer (TimerNo) Stops selected timer.

Misc. Commands/Functions
WAIT length units Length 0-255, units = us, 10us, ms, 10ms, s, m, hour
WAIT WHILE|UNTIL
condition

Wait until condition is true

SLEEP time Equivalent to Wait time s. Included for compatibility with
other BASIC dialects

DIR PORTBIT IN|OUT PORTBIT is PORTA.0, PORTA.1, etc. IN/OUT is the
direction. On 10/12 series chips, use GPIO.0, etc.

DIR PORT DirByte PORT is A, B, etc. DirByte is a byte specifying the value
for the applicable TRIS register (Can be a var or constant)

PULSEOUT pin, time
units

Set pin high for time.

POT pin, output var Measure the period of an R/C oscillator connected to pin,
then write result to output var. This command should be
used sparingly, as each use results in 20 assembly
instructions. If the same pin is to be read twice, use a
function with this command in it.

PWMOut channel, duty,
cycles.

Output a software PWM pulse on the given channel.
(Channels are defined by setting SoftPWM1, SoftPWM2,
etc.) Duty is the duty cycle, and ranges from 0 to 255.
Cycles is the number of PWM cycles to output – on a 20
MHz chip, 1 cycle = 28 clock cycles + 10 clock cycles per
channel.

‘ ; REM Used as comments.
Var = PEEK (location) Set Var to the contents of the given memory location
POKE (location, value) Set the given RAM location to the given value
Var = Random Returns a pseudo-random integer between 0 and 255
Swap (Var1, Var2) Swaps the values of Var1 and Var2
Swap4(Var) Swaps the nibbles in Var
ReadTable TableName,
TableIndex, OutputVar

Reads the value from location TableIndex of TableName,
and store it in OutputVar

Compiler script commands:
Command Explanation
IF condition THEN
…
END IF

Execute the script within if condition is true. Note that
constants can be used as vars, and vars must not be used.
Otherwise, this is similar to the normal IF.

ERROR message Add message to the error listing
define = sum Set the compiler constant to the value of sum
Note: These commands are executed by GCBASIC, and are useful for setting
constants to a particular value inside include files. They are not downloaded to the
PIC.
Constants are treated as variables are normally treated –they can be set.
Constants must have been defined before they are used in an IF, either by setting
them, or using #define.

Functions:
Function Explanation
x * y, x / y, x + y, x - y Self explanatory
x AND y Logical AND of x and y. Spaces must be included
x OR y Logical OR of x and y. Spaces must be included

x XOR y Logical XOR of x and y. Spaces must be included
NOT x Inverts x. Space must be included
x & y, x | y, x # y, ! x Short form of AND, OR, XOR, and NOT respectively.

Spaces are optional with the short form.
x = y Returns 0 if not equal, 255 if equal
x <> y Returns 255 if not equal, 0 if equal
x > y Returns 255 if x is more than y, 0 otherwise
x < y Returns 255 if x is less than y, 0 otherwise
x >= y Returns 255 if x is equal to or more than y, otherwise 0.
x <= y Returns 255 if x is less than or equal to y, otherwise 0.

Short Forms:
 x += y is equivalent to x = x + y
 x -= y is equivalent to x = x - y

Functions must have “var =” before them (minus quotes), where var is the name of
the variable that is to be set.
Order of operations:

• ()
• +, -
• AND, OR, XOR, NOT

Conditions
• = (equal)
• <> or ~ (not equal)
• < (less than)
• > (greater than)
• <= (less than or equal)
• >= (greater than or equal)

Conditions are basically sums, with either zero (false) or non-zero (true) results.

Built-in #defines (used for #IFDEF)
• ChipMHz
• ChipName
• ChipFamily (returns 12, 14 or 16, depending on instruction width)
• OSC
• Var()
• NoVar()
• Bit()
• NoBit()
• AllOf(define1, define2, …)
• OneOf(define1, define2, …)

Var(), NoVar(), Bit() and NoBit() are functions that are built in to #IFDEF. They will
return true if a variable or bit is declared/not declared in the currently selected PIC
chip.

AllOf and OneOf will return true if all of or one of the listed defines is declared.

Built-in #defines (used for IFs, WAITs, etc.)
Name Value
ON 1
OFF 0
TRUE 255 (or 1 for bit variables)
FALSE 0
NB. Other #defines are set by the built-in include files.

Time Units

Data Types:
Type Size Range
Bit 1 bit 0 to 1
Byte 8 bits 0 to 255
Word 16 bits 0 to 65535
Float 24 bits ?

Assembler/Programmer parameters:
These options can be used after the /A: and /P: switches to control the assembler and
programming software:

Symbol Replaced with
%Filename% The original filename of the BASIC

program
%Chipname% The chip model

Data Tables:
Data tables can be used to store a list of up to 255 numbers in the program memory of
the chip, in a way that allows them to be recalled. The format is as follows:

Table [Name of Table]
 [Value 1]
 [Value 2]
 [Value 3]
End Table

Binary, hexadecimal and decimal numbers can be used in the table.

Chip Configuration:

The following are the default settings used by GCBASIC for chip configuration:

Units GCBASIC units
Microseconds us
Microseconds * 10 10us
Milliseconds ms
Milliseconds * 10 10ms
Seconds s
Minutes m
Hours h

• Oscillator = HS, XT or INTOSC (see help for more detail)
• MCLR = Off
• WDT = Off
• LVP = Off

For 18x chips, type in the config exactly as you would type it in to MPASM. For
example:

#config OSC = HS_PLL, WDT = ON

For 10x/12x/16x chips, you may use either the 18x format as shown above, or the
default 10x/12x/16x format as used by MPASM:

#config LP_OSC, MCLRE_ON

Random Notes:
• When dealing with system registers, the variable name may be omitted and

only the bit specified. For example, SET ADCON0.ADON ON is identical to
SET ADON ON.

• GCBASIC is not case sensitive – for example, Wait, WAIT, wait and WaIt
would all be treated identically.

Known Limitations:
• Chip Speed: 0.1-60 Mhz
• Lines of GCBASIC code (including subs): 20000
• Assembly Program: 20000 lines
• Include files: 25 (includes built-in include files)
• Constants: 400
• Variables: approx. 3800 or available RAM on PIC (whichever is less)
• Subs (including in include files): 500
• Array size: 80 bytes on 10/12/16, 255 bytes on 18 (Avoid large arrays

wherever possible)
• String length: 20 characters default, 80 if declared using DIM
• Strings: 500

Things which MUST be defined in EVERY program:

#chip model, MHz

(These can be defined in an include file instead. If something is defined in an include
file and the main program, the definition in the main program will be used.)

	Great Cow BASIC Command Reference and General Information
	Flow Control
	Variable
	#include “file.h”
	#define CONST value
	#chip MODEL, MHz
	#osc Type
	#config settinglist
	#IFDEF constant value[,value2,etc.]
	#SCRIPT
	#int frequency
	#startup subname
	#RAM ramsize
	RS 232 Commands (lowlevel\rs232.h)
	InitSer (channel, rate, start, data, stop, parity, invert)
	SerSend (channel, data)
	SerReceive (channel, variable)
	SerPrint (channel, String$)
	ReadAD (port)
	ADFormat (Format_Left | Format_Right)
	ADOff
	SPIMode (Mode)
	SPITransfer (send, receive)
	EPRead (address, var)
	EPWrite (address, data)
	ProgramWrite (Address, Data)
	ProgramRead (Address H, Data)
	ProgramErase (Address)
	PWMOn
	PWMOff
	HPWM Channel, frequency, duty cycle
	USDistance (port no.)
	Tone (Frequency, Duration)
	PRINT String$
	LOCATE column, line
	PUT (location, ASCII char)
	x = GET (location)
	CLS
	LCDInt (Value)
	LCDHex (Value)
	LCDWord (Value)
	DisplayValue (Display Select, Value)
	DisplayChar (Display Select, ASCII Code)
	String handling Functions
	Var = LEN(String$)
	OutString$ = MID$(InString$, position, length)
	InitTimer0 (Source, Prescaler)
	InitTimer1 (Source, Prescaler)
	InitTimer2 (Prescaler)
	ClearTimer (TimerNo)
	StartTimer (TimerNo)
	StopTimer (TimerNo)
	Misc. Commands/Functions
	WAIT length units
	WAIT WHILE|UNTIL condition
	SLEEP time
	DIR PORTBIT IN|OUT
	DIR PORT DirByte
	PULSEOUT pin, time units
	POT pin, output var
	PWMOut channel, duty, cycles.
	‘ ; REM
	Var = PEEK (location)
	POKE (location, value)
	Var = Random
	Swap (Var1, Var2)
	Swap4(Var)
	ReadTable TableName, TableIndex, OutputVar
	Compiler script commands:
	Functions:
	Function	
	Explanation
	Conditions
	Built-in #defines (used for #IFDEF)
	ChipMHz
	Assembler/Programmer parameters:
	Symbol
	Replaced with

