Great Cow
BASIC

Beginner’s Tutorial

Great Cow BASIC Beginners Tutorial

Introduction

Great Cow BASIC is a simple yet powerful language for making programs that run
on Microchip PIC microcontrollers. It is simple and easy to use enough to make the
beginner comfortable, and yet has enough power to satisfy the experienced
programmer.

Often when we think of programming a computer, we imagine having to type in
thousands of lines of weird commands that take years to memorise. This is not so!
With GCBASIC, you only have to type in a few easy to remember commands like
“if”, “wait” and “set”. GCBASIC is called a compiler, and its job is to translate the
simple words that we type in into a series of numbers that the robot can understand.

With this tutorial, we will start out by spending a few minutes learning the basic
principles of programming. Then in tutorial 1, we shall put on our robot expert hats,
and start programming our robots. At first, we’ll just make them do simple things like
flash lights, and drive around. Then, we’ll teach them to think, by responding to the
world around them. Finally, we’ll find out how to make the robots do something over
and over again.

In tutorial 2, we’ll learn how to make our programs neater, so that we can understand
what they do in a year’s time. Once our programs are neat, we can move on to tutorial
3, where we will do fun things like send messages to other robots, and read sensors
with higher precision.

Finally in tutorial 4, we’ll learn some of the technical aspects of programming, so that
we can program the robots that we design ourselves.

To complete this tutorial, you will need:
* One of these robots:
o eLabtronics eRacer

* A computer with GCBASIC installed correctly

e Crimson Editor, set up to work with GCBASIC (This is included in the
installer)

* A suitable programmer for your robot, set up for use with GCBASIC.

* About 15 mins for the introductory tutorial, and approx. 45-90 minutes for
each of the following tutorials.

Great Cow BASIC Beginners Tutorial

Contents

Beginner’s TULOIIAl. . ..uueiiiiiiiiiiieiieiiiiieeiiiiiiieee ettt ieeee e e eeeeinnnn 1
Introductory Tutorial: What iS programming?..........ceeeeuveeeeeeueeeeeiiiiiiiiiiviiieeeeiieeeeenn. 4
Tutorial 1: BasicS Of GCBASIC ..ot 5
Exercise 1-1: Introducing your robot to0 GCBASIC...cuvvvviiiieiiiiiiieiiieieeeieeeee 6
ExXercise 1-3: Walting...oooiiiiiiieeiiiiiiiiiieiiiiieeeeeeeeeiiiieeee et 9
... 11
Exercise 1-4: Repeating things over and OVeT.......oouueeueveveieeiiiiiiiiiiiiieeeeeiiieeeeen 12
Exercise 1-5: Making deCISIONS.eiieueeiiiieireiiiiiiiiieiieiiieieeeeieeeeeeeeeeeeeeeeeeeeeeeeeinans 13
Application 1: FOIIOWING 8 [IN€...uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeiiiiieeeeeeeienn, 14
Tutorial 2: Thinking Better.........ciieeuueiiiiiiiiiiiiiiiiiiieiieeeeeieeeeeeee e 15
Exercise 2-1: USING VArIableS. ..couuueveiiiiiiiiiiiiiiiiiiiiieiiieiiiieeeeeeeeeiiieeeee e 16
Exercise 2-2: Repeating things a set number of times.........oeevevveeeeeieiiiiiiiiiiiiinnnnnn, 17
Exercise 2-3: Repeating things until something happens.......ccccveeeeecveveeeeiiiiieinnnn. 18
Exercise 2-4: USING SUDTOULINES. ...eeiieureeiiiiieiiiiiiiiiiieeiiiieeeiiieieeeiieeeeeiiiieeeeeieiienns 19
Exercise 2-5: USING CONSLANTS...eevieuureieiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiiieeeeeeeiiieeeieeeeeiiieieennnn, 20

Great Cow BASIC Beginners Tutorial

Introductory Tutorial: What 1s
programming?

When programming, it is important to remember one key thing: Computers are not
smart. They cannot think without a lot of help from the programmer. The
programmer must break everything down into little steps.

A human can see an instruction that says, “move to a wall”, and follow it without
having to think about it. A robot, on the other hand, needs a lot more help. How does
it know how to move? How does it know when it is at the wall? What does it do once
it is at the wall? In this example, we would have to program the robot to do this:

* Start moving
* Keep moving until the wall is hit
* Stop moving when the wall is hit

We call these simple steps “pseudo code”, because the steps are very similar to
what is actually programmed into the robot. Once you have become accustomed to
having to spell everything out to the computer, it becomes easy. To practice, try filling
out this table: (the first two have been done for you)

Task Instructions for a robot

Move to a wall Start driving forwards
Wait until the sensors say that a wall has been hit
Stop moving

Drive in a zigzag pattern Turn left

Wait a little while

Turn right

Wait a little while

Repeat the previous instructions

Turn on a light when a
switch is pressed

Drive forwards for 12
seconds

Once you have completed the table, please check your answers with those in the back
of this tutorial, and then complete this statement:
Programming is:

Great Cow BASIC Beginners Tutorial

Tutorial 1: Basics of GCBASIC

In the introductory tutorial, we found that programs are just lists of simple commands

that a robot can understand. Now, we will learn the actual commands that the robot
can recognize. We’ll start with the simple commands in order to make ourselves
familiar with GCBASIC, and then we’ll move on to some of the decision making
commands that allow robots to carry out useful tasks.

In this tutorial:

Exercise 1-1: Introducing your r1obot to GCBASIC......ovviiiuvviiiiiieiiiiiieiiieeeeieeeee 6
ExXercise 1-3: Walting...oooiiiieiueeiiiiiiiiiiieiiiiiieeeeeeeeeiiiieeeeeeeeeiiieeeeeeeeeiiieeeeeeeeeesieeees 9
... 11
Exercise 1-4: Repeating things over and OVlccoeeuvvveieiiiiiiiiiiiiiiiiieeeeeeviivivennnns 12
Exercise 1-5: Making deCISIONS.uviieeureiiiiieeiiiieeiiiiieeeiieieeeeeieeeeeeeeeeieieeveeennn 13
Application 1: FOIIOWING 8 IIN€...uuuuvviiiiiiiiiiiiiiiiiiiiiiieieiiiiiieeeee e, 14
Exercise 2-1: Using variablesS.....oouueiiiieueiiiieiiiiiiiiiiiiieieiiieeeeeieeeeeiiee e 16
Exercise 2-2: Repeating things a set number of times......cccvuvevveeeiiiiiiiiiiiiiiiiiiiiiiinnnnnnn, 17
Exercise 2-3: Repeating things until something happens.........ccc.eeeeeeuveeieeiivveeeeennenn... 18
Exercise 2-4: USING SUDTOULINES...uuvvviiiiiiiiiiiiiiiiiiieieeeieiiiiiiiiieeeeeeiiiiieiieeeeeieieiiiiiinnnn, 19
Exercise 2-5: USING CONStANTS.ceuveiiiiiiiiiiiiiiiieeiiiiiiieeeiiiieeeiiieeeeeeeiiiiieveeeeeeenn 20

Great Cow BASIC Beginners Tutorial

Exercise 1-1: Introducing your robot to GCBASIC

One of the first things that we must do when writing a program with GCBASIC is tell

GCBASIC what type of robot the program is for. When we put our program into
GCBASIC, our program is converted into a series of numbers that the robot can
understand. Different robots, however, require different sets of numbers to achieve a
given task. If we do not tell GCBASIC the type of robot it is dealing with, it cannot
produce the correct set of numbers and therefore our program will not work.

To tell GCBASIC what type of robot we have is easy. We just need to use the
#include command, to tell it to read a file that has information on our robot, such as
where we have connected motors, lights, and other things.

We are now going to make our first program to download to the robot. Open up
Crimson Editor, and click New. Then, click Save and type a name for our program, so
that if something goes wrong, we will not lose any of our work.

To help make the program easier to read, we can set Crimson Editor to colour code
our program. Click the Document menu, then Syntax Type, and then select
GCBASIC.

Now, it is time to actually write the program. Just follow these two simple steps:
1. Tell GCBASIC what type of robot it is dealing with. In the editor, type:

#include <eracer.h>

2. Add a command, so that the program actually does something we can see.
For now, lets just turn on the green light under the robot. Under InitBot, type:

Set Green on

That’s all there is to it! Press F9, and click write on the programmer. Wait a few
seconds, and the green light will come on! Don’t worry about capitals! GCBASIC
doesn’t care, so why should we? Congratulations, we’ve just made our first program
using GCBASIC!

Before we move on to Exercise 1-2, let’s make a note of what we have learnt:
When we make a new program, we must first tell GCBASIC what sort of robot it is

dealing with, using the command . Next, we

must set up the robot, using the command

For an example of the file created here, please see the file Exercise 1-1.txt in the Tutorial Programs
folder.

Great Cow BASIC Beginners Tutorial

Exercise 1-2: Moving, and turning things on and off

In the last exercise, we turned on the green light under the robot. However, there are
several other things we can set on and off. To turn things on and off, we use the SET
command. When using the SET command, we must type SET, and then the name of
the thing we want to set, and then ON or OFF, depending on what we want to do.

Here is a list of the things that we can turn on and off. Don’t worry, there is no need to
memorise these (although they are so simple, we probably will anyway!)

Item GCBASIC Name
Top Left LED TL LED

Top Right LED TR LED

Bottom Red LED RED

Bottom Green LED GREEN

Buzzer BUZZER

Let’s make a program that will turn on the green led, and the left led on top of the

robot. To do this, we must:

1. Create and save a new program. Forgotten how? See Exercise 1-1.
2. Add a comment to the top of the program. To do this, put an apostrophe (*)
at the start of a new line, and then type in a comment. For example, we could

write:

‘Program to turn on the top left LED

3. Choose the robot and then set it up. Remember the first command we used
in Exercise 1-1?7 We need to add it to our new program. The command is:

#include <eracer.h>

4. Turn on the green LED. Remember the command from Exercise 1-1?

Set Green on

5. Turn on the top left LED. The command is very similar to the command for

the green LED:

Set TL_LED on

6. Download our program. Press F9, and then click Write

Now, the top left and green LEDs will turn on when we run our program!

How about trying to do some programming on your own now? Try and program in

these combinations:

e Bottom red LED and buzzer on

* Both top LEDs on
* AIllLEDs on

» Just the buzzer on (careful — this one can be annoying to other people!)

Great Cow BASIC Beginners Tutorial

We haven’t covered how to turn things off, but then there’s really no need to until the
next tutorial. The command to turn something off is the same as the command to turn
something on, except we write off instead of on! Confusing, isn’t it!

Let’s continue with Exercise 1-2. Now, we get to make the robot move! Again, the
commands to make the robot move are really very simple. Just refer to this table:

Movement GCBASIC Command
Forward Forward

Reverse Reverse

Turn left TurnLeft

Turn right TurnRight

Spin to the left SpinLeft

Spin to the right SpinRight

Stop moving Stop

Now, we shall make the robot drive forwards:
1. Create and Save a new program.
2. Choose a robot, and set it up.

#include <eracer.h>

3. Add the command to make the robot drive forwards. Refer to the table
above to find the command.
4. Download the program to the robot (Press F9)

The robot should now drive forwards! Now try:
e Spinning to the left
* Turning right
* Driving forwards, using one of the LEDs as a headlight.
* Reversing, using the red LEDs as taillights

Make a brief mental note of how the robot moves. It will come in handy later.

For an example of the file created here, please see the file Exercise 1-2.txt in the Tutorial Programs
folder.

Great Cow BASIC Beginners Tutorial

Exercise 1-3: Waiting

Having lights turn on when we switch on the robot gets boring quickly. After all, we
could just use a simple switch to accomplish the same thing. Wouldn’t it be much
better if the robot could actually do something useful, like act as a timer, or do a silly
yet entertaining dance?

This is where the Wait command is useful. The Wait command can make the robot
do nothing for an amount of time, which we specify. To use the Wait command, we
write Wait, and then a number between 0 and 255, and then the units of the number
that we typed in. The available units are:

Units GCBASIC units
Microseconds us
Microseconds * 10 10us
Milliseconds ms
Milliseconds * 10 10ms

Seconds S

Minutes m

Hours h

To make the robot wait for 5 seconds, we would use the command Wait 5 s.
Normally; we can just use the units that we would use most of the time. However,
supposing we want to make the robot wait for 500 ms? We cannot use the command
Wait 500 ms, as 500 is greater than 255'. This is why there are 10us and 10ms units.
We can use the command Wait 50 10ms, and the program will work fine.

For a simple demonstration of the Wait command, lets just turn on the green LED for
2 seconds. To do this:
1. Create a new file in Crimson Editor, and Save it.
2. Add the line to set up the robot.
3. Add a command to turn on the green LED. Refer to the previous exercise if
you have forgotten.
4. Below that, type in the necessary wait command:

Wait 2 s

W

Add a command to turn the green LED off again.
6. Download the program!

' This is due to a technical limitation of PIC microprocessors that renders them unable to handle
numbers greater than 255. This may be fixed in a future version of GCBASIC, but until then we’ll need
to find ways to work around this limit.

Great Cow BASIC Beginners Tutorial

If we have written our program correctly, the LED will turn on for 2 seconds, and
then switch off again.

For an example of the file created here, please see the file Exercise 1-3.txt in the Tutorial Programs
folder.

Let’s go back to one of the scenarios that we wrote pseudo code for back in the
introductory tutorial, where we had to make a robot drive forwards for 12 seconds.
With the pseudo code from the introductory tutorial, and all of the things we have
learned in the past two exercises, this should be easy. Try writing it yourself!

So far, we have made the robot wait for a set amount of time. This is useful
sometimes, but what if we only want it to wait until something happens? Supposing,
say, we want to make a robot alarm, which we can turn off. This is where the Wait
Until command is useful. When we use the Wait until command, we must type Wait
Until, and then the name of an input, and then the state of the input:

Input GCBASIC name States

Button BUTTON Pressed, Released
Left light sensor LDR Left Light, Dark
Right light sensor LDR Right Light, Dark

Say we want the program to wait until the button is pressed. We use the command:

Wait Until Button Pressed

It doesn’t seem too hard to understand, does it? And once again, don’t worry about
the capitalisation: We could make every third letter a capital, and our program would
still work.

Let’s make a program that can act as an alarm. To do this, we must make the robot
wait until someone shines a light at it. When the thief shines their light on the robot,
the robot can beep, flash some lights, and spin, to scare away the thief. Here are the
steps:

1. Create and save a new program in Crimson Editor.

2. Add the line to introduce the robot to GCBASIC, and set it up.

3. Add the command that waits for the light sensor to detect light:

Wait Until LDR Left Light

4. Add a few commands to scare the thief. Why not make your program
unique, and think up these yourself? Perhaps you could take some of the
commands that we used in Exercise 1-2, and use them!

Download your program.

6. Place the robot in a dark room. Bend the left light sensor so that it faces
towards the door. If you have programmed the robot to move, make sure it is
not going to fall anywhere.

7. Creep into the room like a thief, and “accidentally” shine a torch at the
robot. It should start doing whatever you programmed it to.

9]

That’s probably the first useful thing we’ve done with GCBASIC. Hopefully it is by
no means the last, though!

10

Great Cow BASIC Beginners Tutorial

For an example of the file created here, please see the file Exercise 1-3b.txt in the Tutorial Programs
folder.

11

Great Cow BASIC Beginners Tutorial

Exercise 1-4: Repeating things over and over

In the last program, there was one major flaw: The alarm only worked once! A thief
could set it off, leave, and then come back later without any fear. Wouldn’t it be great
if there were a way to make the alarm reset itself?

This is where the GOTO command is useful. The GOTO command will make the
robot stop reading the part of the program it is up to, and move to another spot. This is
a very useful command for repeating things over and over again.

But how do we mark the spot we want the program to go to? The answer is that we
used “line labels”. A line label is a word (or words) that are on a line on their own,
with just a colon (:) for company. For example, these are all valid labels:

* Main:

* Start:

* RepeatAlarm:
We can make up as many line labels as we want, and we can call them almost
anything we want. There are only three rules for line labels:

1. Do not use the same name for several places! The robot will get confused.

2. Do not use the names of commands as labels, unless they are with another
word. For example, do not call a label “Set”. (SetLightOn: and similar are
fine, since other things accompany the command.)

3. No Spaces!

Let’s try using GOTO now! We can modify the program from the previous example
here:
1. Open the file that we created in the last example in Crimson Editor.
2. We need to add a line label at the start of the main program. To do this,
click just before the “Wait Until” command.
3. Type in the label. Let’s call this label “AlarmStart”

AlarmStart:

4. Now, we need to add a GOTO command to jump back to the label. This
needs to go at the end of the program, so that the robot gets to it just after it’s
scared away the thief:

goto AlarmStart

Notice how we left off the colon (:) in the goto. We only add the colon at the

end of the actual label.

Save changes, and download the program to the robot!

6. Now, creep into the room like a thief over and over. The robot will see
every time!

9]

12

Great Cow BASIC Beginners Tutorial

For an example of the file created here, please see the file Exercise 1-4.txt in the Tutorial Programs
folder.

13

Great Cow BASIC Beginners Tutorial

Exercise 1-5: Making decisions

Up to now, each program has been list of things the robot has to do. This is useful
sometimes, but to be really useful a robot has to be able to understand, at least
partially, what is going on around it.

This is where the IF command comes in handy. The IF command allows the robot to
only run a certain piece of code if certain conditions are met. Perhaps, say, the robot
should drive forwards when a button is released, and backwards when a button is
pressed. Another more practical example could be a night-light that only turns on
when it is dark.

To use the IF command, we type IF, then the condition that has to be true (See
Exercise 1-3), THEN, and then the command to carry out if the condition is true. If
we wanted the buzzer to turn on when we press the button, we would type:

IF button pressed THEN Set buzzer on

Let’s try programming a night-light now:
1. Open Crimson Editor, and create and save a new file.
2. Add the usual commands to set up the robot. Glance back at exercise 1 if
you have forgotten what these are.
3. Add a line label at the start of the program. We want the night-light to last
more than one night, don’t we? Let’s call this label “Start:” since it’s easy to
remember.

Start:

4. Now we need to add the IF commands to turn the light on and off:

IF LDR _Right Light THEN Set Green OFF
IF LDR Right Dark THEN Set Green ON

5. Finally, we add the goto command to make the robot check over and over
again:

goto Start

6. Now download to the robot, and try out the program!

That concludes the first part of Tutorial 1. The time has now come to apply the
knowledge gained. Turn over for the first Application!

14

Great Cow BASIC Beginners Tutorial

For an example of the file created here, please see the file Exercise 1-5.txt in the Tutorial Programs
folder.

15

Great Cow BASIC Beginners Tutorial

Application 1: Following a line

The Task:
To make the robot follow a line.

Why is this relevant?
Many robots in the real world have to follow lines. There are:
* Industrial robots that drive around factories, picking up and dropping off
things that would otherwise have to be delivered by hand.
* Lawn mowing robots that follow a wire buried under the lawn, in order to
achieve an even cut, without running into the roses or chasing after people!

While this application uses a coloured line and light sensor instead of buried wires
and a magnetic sensor, the basic principles are the same.

Special Requirements:

¢ One of these:
o A white line on a dark floor

o A large white paper mat with a black line
o Some other surface with a line, where the line contrasts sharply with
the surface.

Programming Hints:

* The robot needs to stay over the line.

* The easiest way to do this is to make it turn one way when it sees the line and
the other when it doesn’t. There are other ways to follow a line — you may like
to try finding and using these as well!

* Make sure that the robot turns, rather than spinning. If it spins, it’ll just shake
from side to side. If it turns, it’ll zigzag its way along the track.

I’m stuck! Where can I see an example program?

Open the file “Application 1.txt” in the Tutorial Programs folder. It is an example of a
line following program that you can look at and use.

16

Great Cow BASIC Beginners Tutorial

Tutorial 2: Thinking Better

Up to this point, the robots we’ve programmed have all been very simple affairs.
They’ve all waited until something has happened, and then done a particular action.
Further to this, all of the actions have been written in a way that would make the
program very messy and hard to read if there were more than a few.

In this tutorial, we’ll learn how to store information so that it can be accessed later,
and we’ll find out ways to make our programs neat. Along the way, we’ll also

discover some more ways to repeat code.

In this tutorial:

Exercise 1-1: Introducing your r1obot to GCBASIC......ovviiiuveiiiiiieiiieiiiiiieieeieeeee 6
ExXercise 1-3: Walting...oooiiieiiuieeiiiiiiiiiiiiiiiieeeeeeeeiiiieeeeeeeeiiiieeeeeeeeeiieeeeeeeeeeeieeees 9
... 11
Exercise 1-4: Repeating things over and OVeI......cccooeeuvvveieeiiiiiiiiiiiiieieeiieeeiiviiviiennnnn 12
Exercise 1-5: Making deCISIONS.veiiieureiiiiiuiiieieeiieiiieeiiieeeeeeeieeeeeeeeeeeeieeeeeennn 13
Application 1: FOIIOWING 8 IIN€...uuuuuviiiiiiiiiiiiiiiiiiieiiiiieiiiiiiieeeeeeeieiiieeeee e, 14
Exercise 2-1: Using variablesS.....o.uuiiiieueiiiiiiiiiieiiiiiieeiiiieeeeeeeeeiiee e 16
Exercise 2-2: Repeating things a set number of times......cccuvvvveeeiiiiiiiiiiiiiiiiiiiiiiinnnnnnn, 17

Exercise 2-3: Repeating things until something happens.......cooeeeeeiiiiiiiiiieiiiiieeneeenee. 18

Exercise 2-4: USING SUDTOULINES. . ..eetuuueeeee ettt eeseeeeeeiteeeeaeeaeeeeeeeeuesaaeaeeeeeeennaaeeens 19
EXercise 2-5: USING COMSTANTS. ..eiiiiiiiitiiiittettttttttttetetetteeteeeeeeeeeaaeeeeeseeseeteunnaaseeseeenaaaeeees 20

17

Great Cow BASIC Beginners Tutorial

Exercise 2-1: Using variables

18

Great Cow BASIC Beginners Tutorial

Exercise 2-2: Repeating things a set number of times

19

Great Cow BASIC Beginners Tutorial

Exercise 2-3: Repeating things until something happens

20

Great Cow BASIC Beginners Tutorial

Exercise 2-4: Using subroutines

21

Great Cow BASIC Beginners Tutorial

Exercise 2-5: Using constants

22

	Great Cow BASIC
	Beginner’s Tutorial
	Introductory Tutorial: What is programming?
	Wait a little while

	Tutorial 1: Basics of GCBASIC
	Exercise 1-1: Introducing your robot to GCBASIC
	Exercise 1-3: Waiting
	
	Exercise 1-4: Repeating things over and over
	Exercise 1-5: Making decisions
	Application 1: Following a line

	Tutorial 2: Thinking Better
	Exercise 2-1: Using variables
	Exercise 2-2: Repeating things a set number of times
	Exercise 2-3: Repeating things until something happens
	Exercise 2-4: Using subroutines
	Exercise 2-5: Using constants

